

optibelt DELTA Chain

OPTIBELT

TECHNICAL MANUAL optibelt DELTA Chain

The **optibelt DELTA Chain** sets new standards in the market for high performance timing belts. Endless **optibelt DELTA Chain** high performance timing belts together with the associated ZRS DC timing belt pulleys enable slip-free synchronous power transmission of up to several hundred kilowatts.

An up to 100% higher power transmission is possible compared to high performance rubber timing belts such as **optibelt OMEGA HP**. The particular focus here is on drives with very high torques. In general, the overall width can be considerably reduced for power drives with small and medium centre distances.

The innovative combination of materials comprising an extremely resistant polyurethane compound, an abrasion-resistant and specially treated polyamide fabric, as well as a carbon fibre cord, provides the **optibelt DELTA Chain** with unmatched strength and resistance to a wide range of chemicals, oils and fluids.

This means that the **optibelt DELTA Chain** is suitable for a wide variety of applications, including uses which were previously reserved for roller chains, for example.

All relevant information as well as the methods to calculate drives with **optibelt DELTA Chain** high performance timing belts are included in this manual. They are supplemented by the Optibelt product ranges and price lists for belts and pulleys, technical data sheets, the optibelt CAP software for drive design, CAD drawings of optibelt ZRS DC toothed pulleys and additional Optibelt documentation, which can be found in their current version on the Optibelt website.

If you have any further questions, please take advantage of the free service provided by our application engineers.

TABLE OF CONTENTS

	Introduction	1
	Sales Organisation of the Arntz Optibelt Group	2 - 3
1 PRODUCT DESCRIPTION	1.1 Structure	6
	1.2 Features	7
	1.3 Dimensions and Tolerances	8 - 9
2 TIMING BELT	2.1 The optibelt DELTA Chain 8MDC	10
PRODUCT RANGE	2.2 The optibelt DELTA Chain 14MDC	11
3 DRIVE DESIGN	3.1 Formula Symbols	12
	3.2 Pre-Selection of the Profiles	13
	3.3 Drive Service Factors	14
	3.4 Additional Factors and Minimum Allowances	15
	3.5 Formulae and Calculation Example	16 - 17
	3.6 Belt Tension Adjustment by Frequency Measurement	18

TABLE OF CONTENTS

4 POWER RATINGS	4.1 The optibelt DELTA Chain 8MDC	19
	4.2 The optibelt DELTA Chain 14MDC	20
5 DESIGN HINTS	5.1 Timing Belt Pulleys/Tension Idlers	21
	5.2 Installation and Maintenance	22
	5.3 Problems – Causes – Remedies	23
6 TOOTHED PULLEYS	6.1 Minimum Pulley Diameter and Designs	24
	6.2 Dimensions and Tolerances	25 - 26
	6.3 Taper Bush Range	27
	6.4 Toothed Pulley Range	28 - 33
7 GENERAL	7.1 Overview of Standards	34
INFORMATION	7.2 Data Sheet for Calculation	35

1.1 STRUCTURE

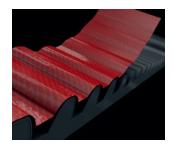
TEETH

The teeth and also the top layer are made of high-strength cast polyurethane or thermoset and an extremely wear-resistant fabric. Both features give the teeth outstanding shear strength.

TOOTH-SIDE FABRIC

The shear strength of the teeth is enhanced by a strong, coated and well-bonded fabric. Friction between the belt and the pulley is also reduced. This reduces the degree to which the friction partners heat up and minimises the running noise.

TOOTH PROFILE


The curved tooth profile of the **optibelt DELTA Chain** timing belt ensures that it perfectly meshes and engages with the precisely fitting grooves on the matching **optibelt ZRS DC** pulleys. This tooth profile is not compatible with Omega or HTD, RPP and STD profiles. Consequently, the use of **optibelt DELTA Chain** timing belts is only recommended for **optibelt ZRS DC** pulleys or CTD or PC pulleys with the same profile. These and all other significant curved profiles, particularly including those of the pulleys referred to above, are standardised in ISO 13050.

TENSION CORD

In contrast to rubber and polyurethane timing belts e.g. the **optibelt ALPHA** product groups, a tension cord made of carbon fibres is used. This stands out particularly with its ability to transmit extremely high forces. Carbon cord achieves unmatched length stability and outstanding breakage resistance in comparison to all other tension cords such as those made of glass, steel or aramid. **optibelt DELTA Chain** timing belts must not be bent otherwise the carbon tension cord will be damaged.

TOP SURFACE

The smooth top surface of the belt consists of an abrasion-resistant, thin, and thus bendable polyurethane compound. Due to the smooth top surface as opposed to a grooved structure, a back bend idler can be used without any significant increase in the noise level.

1.2 FEATURES

POWER TRANSMISSION

An up to 100% higher power transmission is possible compared to high performance rubber timing belts such as the optibelt OMEGA HP. The particular focus here is on drives with very high torques. In general, the overall width can be considerably reduced for power drives with small and medium centre distances.

RESISTANCE TO CHEMICALS

Due to the materials used, especially the cast polyurethane used in this case, the optibelt DELTA Chain exhibits good to very good resistance to oils, greases and a large number of aggressive chemicals when compared to rubber. Verification of the selected drive in tests is generally recommended. Simple swelling tests should be performed in advance.

TEMPERATURE RESISTANCE

The timing belt withstands temperatures of approx. -30°C to +80°C. Temperatures exceeding this level may result in premature failure of the belt.

EFFICIENCY

Timing belt drives operate synchronously with positive engagement power transmission, i.e. without speed loss, in contrast to drives with frictional power transmission. Despite the high-strength polyurethane, the belt is still flexible in the bending direction, and the specially developed tooth fabric provides almost frictionless engagement with the teeth, resulting in up to 98% efficiency.

NOISE EMISSIONS

The optimised tooth shape and the coated, tooth-facing fabric minimise friction and the noise that occurs when the tooth engages with the pulley. Moreover, by reducing the belt width by up to 50% compared to high performance rubber timing belts, the noise component caused by air displacement is also considerably reduced. This means overall that the relatively hard optibelt DELTA Chain is able to match, or even improve on, the noise level of rubber timing belts, especially compared to much wider standard rubber or polyurethane timing belts.

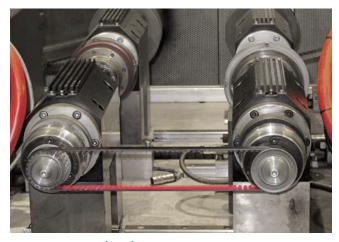


Figure 1.2.1: Test bench

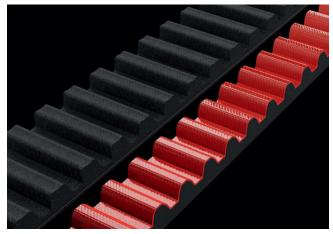


Figure 1.2.2: Reduced width

1.3 DIMENSIONS AND TOLERANCES

Table 1.3.1: Nominal dimensions and weights per metre

Profile	Tooth pitch	Overall height	Tooth height	Metre weight per mm width
	t [mm]	h [mm]	h, [mm]	[kg/(m*mm)]
8MDC	8.0	5.9	3.43	0.0048
14MDC	14.0	9.8	6.0	0.0083

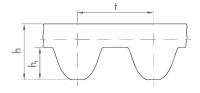


Figure 1.3.1: Profile DC

LENGTH TOLERANCES

The length tolerances indicated in Table 1.3.2 refer to the centre distance. The measuring arrangement is shown in Figure 1.3.2.

Table 1.3.2: Length Tolerances

	Timing be	Length tolerance a _{LTol} [mm]		
		<	760	± 0.30
>	786	<	1016	± 0.33
>	1022	<	1272	± 0.36
>	1274	<	1520	± 0.41
>	1526	<	1778	± 0.43
>	1784	<	2032	± 0.46
>	2040	<	2282	± 0.49
>	2288	<	2536	± 0.52
>	2544	<	2792	± 0.54
>	2800	<	3048	± 0.56
>	3052	<	3304	± 0.58
>	3312	<	3566*	± 0.60

^{*}For longer lengths, 0.03 mm have to be added for each increment of 250 mm.

Figure 1.3.2: Arrangement to measure the belt length

Table 1.3.3: Measuring forces to determine the belt length

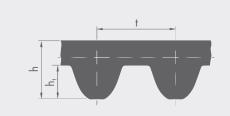
				١	Width [mm]			
Profile	12	20	21	36	37	62	68	90	125
		Measuring force [N]							
8MDC	267		467	756		1223			
14MDC		1179			2046		3447	4315	5627

1.3 DIMENSIONS AND TOLERANCES

Table 1.3.4: Width tolerance

Profile Width		Permissible tolerance of belt width [mm]				
	[mm]	Pitch length L _w ≤ 840 mm	Pitch length L _w > 840 mm ≤ 1680 mm	Pitch length L _w > 1680 mm		
8MDC	< 12	±0.4	+0.4/-0.8	±0.8		
	≥ 12 < 21	±0.8	+0.8/-1.2	+0.8/-1.2		
	≥ 21 < 36	±0.8	+0.8/-1.2	+0.8/-1.2		
	≥ 36 < 62	±0.8	+0.8/-1.2	+0.8/-1.2		
	≥ 62	±1.2	+1.2/-1.6	±1.6		
14MDC	< 20	±0.8	±0.8	+0.8/-1.2		
	≥ 20 < 37	±0.8	+0.8/-1.2	+0.8/-1.2		
	≥ 37 < 68	±0.8	+0.8/-1.2	+0.8/-1.2		
	≥ 68 < 90	+1.2/-1.6	±1.6	+1.6/-2.0		
	≥ 90 < 125	±1.6	+1.6/-2.0	±2.0		
	≥ 125	±2.4	+2.4/-2.8	+2.4/-3.2		

STANDARDIZATION


optibelt DELTA Chain timing belts and optibelt ZRS DC pulleys are standardized in ISO 13050.

2 TIMING BELT PRODUCT RANGE

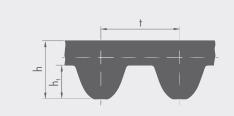
2.1 optibelt DELTA Chain 8MDC

Pro	file	8MDC
t	[mm]	8.0
h	[mm]	5.9
h _t	[mm]	3.43

optibelt DELTA Chain 8MDC							
Profile, length	Pitch length L _w [mm]	Number of teeth	Profile, length	Pitch length L _w [mm]	Number of teeth		
8MDC 640 8MDC 720 8MDC 800 8MDC 896 8MDC 960	640,00 720,00 800,00 896,00 960,00	80 90 100 112 120	8MDC 3280 8MDC 3600 8MDC 4000 8MDC 4400 8MDC 4480	3280,00 3600,00 4000,00 4400,00 4480,00	410 450 500 550 560		
8MDC 1000 8MDC 1040 8MDC 1120 8MDC 1200 8MDC 1224	1000,00 1040,00 1120,00 1200,00 1224,00	125 130 140 150 153					
8MDC 1280 8MDC 1440 8MDC 1600 8MDC 1760 8MDC 1792	1280,00 1440,00 1600,00 1760,00 1792,00	160 180 200 220 224					
8MDC 2000 8MDC 2200 8MDC 2240 8MDC 2400 8MDC 2520	2000,00 2200,00 2240,00 2400,00 2520,00	250 275 280 300 315	Please also	o refer to the current	product range		
8MDC 2600 8MDC 2800 8MDC 2840 8MDC 3048 8MDC 3200	2600,00 2800,00 2840,00 3048,00 3200,00	325 350 355 381 400		quire about other dim			
	Sta	ndard widths: 12 mm	n, 21 mm, 36 mm, 62	2 mm			

Intermediate widths on request

Example order:


optibelt DELTA Chain 1120 8MDC 21

 $\begin{array}{ll} 1120 & = pitch \ length \ L_w \ [mm] \\ 8MDC & = profile \\ 21 & = width \ [mm] \end{array}$

2 TIMING BELT PRODUCT RANGE

2.2 optibelt DELTA Chain 14MDC

Pro	file	14MDC
t	[mm]	14.0
h	[mm]	9.8
h _t	[mm]	6.0

optibelt DELTA Chain 14MDC						
Profile, length	Pitch length L _w [mm]	Number of teeth	Profile, length	Pitch length L _w [mm]	Number of teeth	
14MDC 994 14MDC 1120 14MDC 1190 14MDC 1260 14MDC 1400	994.00 1120.00 1190.00 1260.00 1400.00	71 80 85 90 100	14MDC 3920 14MDC 4326 14MDC 4410	3920.00 4326.00 4410.00	280 309 315	
14MDC 1568 14MDC 1610 14MDC 1750 14MDC 1778 14MDC 1890	1568.00 1610.00 1750.00 1778.00 1890.00	112 115 125 127 135				
14MDC 1960 14MDC 2100 14MDC 2240 14MDC 2310 14MDC 2380	1960.00 2100.00 2240.00 2310.00 2380.00	140 150 160 165 170	ALL	DIMENSIONS ON RE	QUEST!	
14MDC 2450 14MDC 2520 14MDC 2590 14MDC 2660 14MDC 2800	2450.00 2520.00 2590.00 2660.00 2800.00	175 180 185 190 200	Please also	refer to the current p	roduct ranae	
14MDC 3136 14MDC 3304 14MDC 3360 14MDC 3500 14MDC 3850	3136.00 3304.00 3360.00 3500.00 3850.00	224 236 240 250 275		uire about other dime		

Intermediate widths on request

Example order:

 $\begin{array}{ll} 1400 & = pitch \ length \ L_w \ [mm] \\ 14MDC & = profile \\ 37 & = width \ [mm] \end{array}$

optibelt DELTA Chain 1400 14MDC 37

3.1 FORMULA SYMBOLS

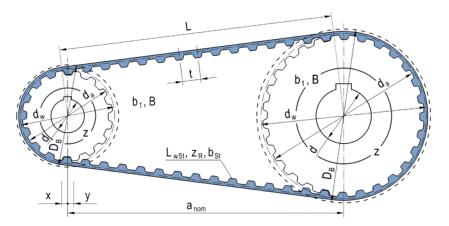


Table 3.1.1: Formula symbols

Formula symbols	Explanation	Unit
а	Drive centre distance	[mm]
a_{nom}	Drive centre distance, calculated	
	with a standard belt length Base drive service factor	[mm]
c ₀		
C ₁	Tooth meshing factor	
c ₂	Total drive service factor	
c ₃	Speed ratio correction factor	
c ₆	Fatigue allowance	
c ₇	Length factor	
d _a	Outside diameter of timing belt pulley	[mm]
d _w	Pitch diameter of timing belt pulley	[mm]
d_{wg}	Pitch diameter of large timing belt pulley	[mm]
d_{wk}	Pitch diameter of small timing belt pulley	[mm]
d_{w1}	Pitch diameter of driving pulley	[mm]
d_{w2}	Pitch diameter of driven pulley	[mm]
E _a	Belt deflection for a given span length	[mm]
F	Test force	[N]
f	Frequency	[Hz]
i	Speed ratio	
L	Span length	[mm]
L _{wSt}	Standard pitch length of the timing belt	[mm]
L _{wth}	Calculated pitch length of the timing belt	[mm]
n ₁	Speed of the driving pulley	[min ⁻¹]

Formula symbols	Explanation	Unit
n ₂	Speed of the driven timing belt pulley	[min ⁻¹]
P	Power to be transmitted	FL VA /7
P _B	from timing belt drive Design power	[kW] [kW]
P _N	Rated power	[kW]
	·	
Pü	Power transmitted from a standard belt width [P _N · c ₁ · c ₇]	[kW]
F _a	Minimum static shaft loading	[N]
F _{n perm}	Maximum permitted circumferential force	[N]
F _{n3}	Circumferential force to be effectively	
	transmitted	[N]
F _n	Circumferential force to be effectively	[N]
+	transmitted incl. actual centrifugal force Tooth pitch	[mm]
, ,	Belt speed (velocity)	[m/s]
	Minimum allowance of the drive centre	[111/3]
X	distance a _{nom} for installation of the	
	timing belt	[mm]
z _e	Number of meshed teeth of the	
	small driving pulley	
z _g	Number of teeth of the large driving pulley	
z _k	Number of teeth of the small driving pulley	
z _R	Number of teeth of the timing belt	
z ₁	Number of teeth of the driving pulley	
z ₂	Number of teeth of the driven pulley	

Figure 3.1.1: Example of a drive geometry: Belts and pulleys

6000

Speed of small timing belt pulley n_k [min⁻¹]

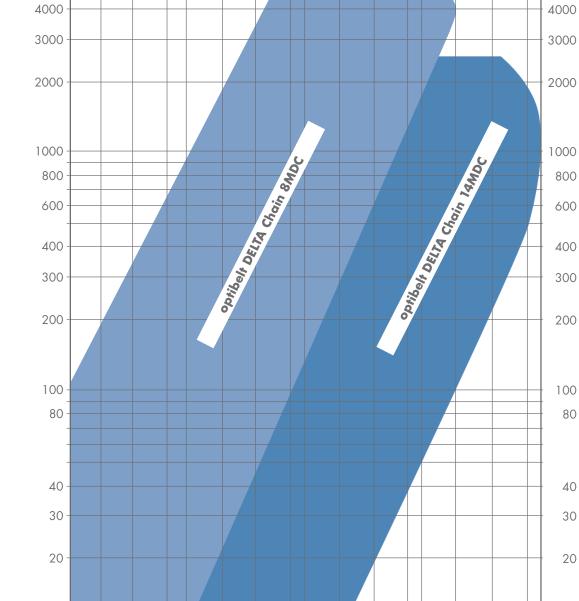
10

0.1

0.2

0.4

0.8


3.2 PRE-SELECTION OF THE PROFILES

6000

Graph 3.2.1: Pre-selection of profiles 8MDC and 14MDC

See also optibelt CAP drive calculation, software at www.optibelt.com

Speed of small fiming belt pulley n_k [min-1]

Design power $P_B = P \cdot c_2$ [kW]

10

20

40

80

100

200

400

800

1000

8

4

2

10

3.3 DRIVE SERVICE FACTORS

TOTAL DRIVE SERVICE FACTOR c2

The total drive service factor c_2 is composed of the base drive service factor c_0 and two further allowances c_3 and c_6 .

$$\begin{aligned} \mathbf{c}_2 &= \mathbf{c}_0 + \mathbf{c}_3 + \mathbf{c}_6 & [-] \\ \mathbf{c}_2 &\geq \frac{M_{A}}{M_{N}}, \ \mathbf{c}_2 &\geq \frac{M_{Br}}{M_{N}} & [-] & \text{at drive} & \text{with } M_{A} \ [Nm], \ M_{N} \ [Nm] \ \text{and } M_{Br} \ [Nm] \\ \mathbf{c}_2 &\geq \frac{M_{Br}}{M_{N} \cdot \mathbf{i}} & [-] & \text{at driven side} & \text{with } M_{N} \ [Nm], \ M_{Br} \ [Nm] \ \text{and } \mathbf{i} \ [-] \end{aligned}$$

The total drive service factor c_2 should also consider a high starting load M_A and a high braking load M_{Br} at the drive or a high braking load at the driven side in proportion to the rated load M_N of the driving machine.

With frequent switching operations and high starting or braking loads, which thus become the main load, while the power transmission itself recedes into the background, an additional safety allowance must be added to the maximum determined quotient.

Table 3.3.1: Base drive service factor c₀

Tuble 5.5.1. Buse unive service factor co	Load type and examples of driving machines								
CO	Uniform run Electric motor Fast-moving turk Piston machine number of cylin	with high	Irregular ope Hydraulic motol Slow-moving tu Piston machine number of cylin	r bine with low					
Type of base load and	Base drive service factor co for daily operating time								
examples of a driven machine	up to 16 h	above 16 h	up to 16 h	above 16 h					
Light drives, joint-free and uniform running Measuring instruments Film cameras Office equipment Belt conveyors (light goods)	1.3	1.4	1.4	1.5					
Medium drives, temporary operation with small to medium impact loading Mixing machines Food processors Printing machines Textile machines Packaging machines Belt conveyors (heavy goods)	1.6	1.7	1.8	1.9					
Heavy drives, operation with medium to strong temporary impact load Machine tools Wood processing machines Eccentric drives Conveying systems (heavy goods)	1.8	1.9	2.0	2.1					
Very heavy drives, operation with strong permanent impact load Mills Calenders Extruders Piston pumps and compressors Lifting gear	2.0	2.1	2.2	2.3					

3.4 ADDITIONAL FACTORS AND MINIMUM ALLOWANCES

BASE DRIVE SERVICE FACTOR co

The base drive service factor co takes into account the daily operating time and the type of driver and driven units. As it is not possible to summarise any thinkable combination of driver, driven unit and operating conditions in one table, the base drive service factors are to be considered as guide values. The assignment of the driven unit depends on the type of load that is present in each case.

For slowly operating drives with a speed of $\leq 100 \text{ min}^{-1}$, a base drive service factor of at least 2 is recommended.

SPEED RATIO CORRECTION FACTOR c3

For the speed step-up ratios, the value that corresponds to the speed ratio is added to the base drive service factor c_0 .

Table 3.4.1: Speed ratio correction factor

Speed ratio i	Speed ratio correction factor c ₃
≥ 0.80	0.0
< 0.80 ≥ 0.57	0.1
< 0.57 ≥ 0.40	0.2
< 0.40 ≥ 0.28	0.3
< 0.28	0.4

Table 3.4.4: Tooth meshing factor c₁

Number of meshed	Tooth meshing factor
teeth	c ₁
≥ 6	1.0
5	0.8
4	0.6
3	0.4
2	0.2

Minimum allowance x for tensioning timing belts

$$x = 0.004 \cdot a_{nom}$$

Table 3.4.2: Fatigue allowance c₆

Drive conditions	Fatigue allowance c ₆
Use of tension or idler pulleys	0.2
Operating time 16–24 h	0.2
Only rare or occasional operation	- 0.2

Table 3.4.5: Minimum allowance y for installation of timing belt pulleys without flange

Drive centre distances [mm]	Minimum allowance y [mm]
≤ 1000	1.8
> 1000 ≤ 1780	2.8
> 1780 ≤ 2540	3.3
> 2540 ≤ 3300	4.1
> 3300 ≤ 4600	5.3

Table 3.4.3: Length factor c₇

Profile 8MD	C	Profile 14MDC					
Pitch length [mm]	c ₇	Pitch length [mm]	c ₇				
\leq 600 > 600 \leq 880 > 880 \leq 1200 > 1200 \leq 1760 > 1760 \leq 2240 > 2240 \leq 2840 > 2840 \leq 3600 > 3600	0.8 0.9 1.0 1.1 1.2 1.3 1.4	≤ 1190 > 1190 ≤ 1610 > 1610 ≤ 1890 > 1890 ≤ 2450 > 2450 ≤ 3150 > 3150 ≤ 3500 > 3500	0.80 0.90 0.95 1.00 1.05 1.10 1.20				

Table 3.4.6: Minimum allowance y for installation of timing belt pulleys with flanges

Profile	Flange on one timing belt pulley [mm]	Flange on both timing belt pulleys [mm]
8MDC	22	33
14MDC	36	58

3.5 FORMULAE AND CALCULATION EXAMPLE

PRIME MOVER

Electric motor 50 Hz star-delta connection

P = 11 kW

 $n_1 = 1450 \text{ min}^{-1}$

DRIVE CONDITIONS

Operational hours per day: 12 hours Number of starts: Twice per day

Environmental influences: Ambient temperature,

no influence of oil, water and dust

Drive centre distance: 400 mm to 450 mm Maximum pulley diameter: 200 mm

DRIVEN MACHINE

Paper machine $n_2 = 920 \text{ min}^{-1} \pm 2\%$ Type of load: Constant

FORMULAS

CALCULATION EXAMPLE

TOTAL DRIVE SERVICE FACTOR

$$c_2 = c_0 + c_3 + c_6$$

 c_0 from Table 3.3.1
 c_3 from Table 3.4.1

$$c_2 = 1.6 + 0 + 0 = 1.6$$

 $c_0 = 1.6$

$$c_3 = 0$$

 $c_6 = 0$

$$P_B = P \cdot c_2$$

$$P_B = 11 \cdot 1.6 = 17.6 \text{ kW}$$

TIMING BELT PROFILE

from Graph 3.2.1

optibelt DELTA Chain

Profile 8MDC

RECALCULATION OF SPEED

$$i = \frac{n_1}{n_2} = \frac{z_2}{z_1} = \frac{d_{w2}}{d_{w1}}$$

$$i = \frac{1450}{920} = 1.576$$

NUMBER OF TEETH ON THE TIMING BELT PULLEYS

 z_1 , d_{w1} Standard timing belt pulleys, see 6.4

$$z_2 = z_1 \cdot i$$

 $z_1 = 36$

$$d_{w1} = 91.67 \text{ mm}$$

$$z_2 = 36 \cdot 1.56 = 56.16$$

 $z_2 = 56$

$$d_{w2} = 142.60 \text{ mm}$$

Requirement $z \ge 22$ minimum number of teeth for profile 8MDC met

RECALCULATION OF SPEED

Please observe minimum diameter!

Minimum number of teeth, see Table 6.1.1

$$i = \frac{z_2}{z_1}$$

$$n_2 = \frac{n_1}{i}$$

$$i = \frac{56}{36} = 1.556$$

$$n_2 = \frac{1450}{1.556} = 932 \text{ min}^{-1}$$

**920 min⁻¹
$$\pm$$
 2% met**

RECOMMENDED DRIVE CENTRE DISTANCE

Recommendation

$$a > 0.5 \quad (d_{w1} + d_{w2}) + 15 \text{ mm}$$

$$a < 2.0 \quad (d_{w1} + d_{w2})$$

$$a > 0.5 (91.67 + 142.60) + 15 mm = 132.14 mm$$

$$a < 2.0 (91.67 + 142.60)$$

$$= 468.54 \text{ mm}$$

a = 425 mm selected provisionally

See also optibelt CAP drive calculation, software at www.optibelt.com

3.5 FORMULAE AND CALCULATION EXAMPLE

FORMULAS

PITCH LENGTH

$$L_{wth} \approx 2\alpha + \frac{\pi}{2} (d_{wg} + d_{wk}) + \frac{(d_{wg} - d_{wk})^2}{4 \alpha}$$

L_{wSt} see timing belt range in Chapter 2

CALCULATION EXAMPLE

$$L_{wth} \approx 2 \cdot 425 + \frac{\pi}{2} \left(142.60 + 91.67 \right) + \frac{(142.60 - 91.67)^2}{8}$$

 $L_{wth} \approx$ 1219.33 mm (selected from Subchapter 2.1)

 $L_{wSt} = 1200 \text{ mm}$

NOMINAL DRIVE CENTRE DISTANCE

$$a_{nom} = K + \sqrt{K^2 - \frac{(d_{wg} - d_{wk})^2}{8}}$$

$$K = \frac{L_{wSt}}{4} - \frac{\pi}{8} \left(d_{wg} + d_{wk} \right)$$

$$a_{\text{nom}} = 208 + \sqrt{208^2 - \frac{(142.60 - 91.67)^2}{8}}$$

 $a_{nom} = 415.22 \text{ mm}$

$$K = \frac{1200}{4} - \frac{\pi}{8} (142.60 + 91.67) = 208 \text{ mm}$$

MINIMUM ALLOWANCE FOR TENSIONING

$$x = 0.004 \cdot a_{nom}$$

x ≥ 1.66 mm

MINIMUM ALLOWANCE FOR INSTALLATION

y =from Table 3.4.6

y = 33 mm Flange on both timing belt pulleys

NUMBER OF MESHED TEETH ON THE SMALL PULLEY

$$z_e = \frac{z_k}{6} \left(3 - \frac{d_{wg} - d_{wk}}{q_{nom}} \right)$$
 Round down value

$$z_e = \frac{36}{6} \left(3 - \frac{142.60 - 91.67}{415} \right) = 17.26$$

$$z_e = 17$$

BELT LENGTH CORRECTION FACTOR

c₇ from Table 3.4.3

 $c_7 = 1.0$

TOOTH MESHING FACTOR

c₁ from Table 3.4.4

 $c_1 = 1.0$

BELT WIDTH OVER RATED POWER

Required: $P_{\ddot{U}} \ge P_{B}$

 $P_{\ddot{\text{U}}}$ = transferable rated power of a standard belt width

 $P_{\ddot{U}} = P_N \cdot c_1 \cdot c_7$

 P_N (profile, b) = P_N · width factor (see Chapter 4)

21.60 kW > 17.6 kW

Requirement met

$$P_{\ddot{U}} = 21.60 \cdot 1.0 \cdot 1.0 = 21.60 \text{ kW}$$

 P_N (8MDC, b = 21 mm) = $12.34 \cdot 1.75 = 21.60 \text{ kW}$

Result:

1 pc. optibelt DELTA Chain timing belt 1 pc. optibelt ZRS DC timing belt pulley 1 pc. optibelt ZRS DC timing belt pulley 1200 8MDC 21 36 8MDC 21

56 8MDC 21

3.6 BELT TENSION ADJUSTMENT BY FREQUENCY MEASUREMENT

TENSION FOR optibelt DELTA Chain TIMING BELT

The correct level of belt tension is of crucial importance for trouble-free transmission of power, and for achieving an acceptable belt service life. Often, tension which is either too high or too low results in early timing belt failure. A belt which is over-tensioned sometimes causes bearing failure in the driver or driven unit.

Adjustment of the specified static span force, e.g. using the thumbprint method, is not a suitable means of tensioning drives correctly in order to fully exploit them economically. Instead of this, adjustment of the static span force through frequency measurement, e.g. using instruments from the **optibelt TT** series, is recommended. The default value for the frequency measurement can be determined using the following formulas.

FORMULA SYMBOLS

m_k [kg/m] Weight per metre t [mm] Pitch

[mm] Span length F_T [N] Static span force

k [1/min] Speed of small pulley v [m/s] Circumferential speed

 $_{
m N}$ [kW] Rated power ${
m z}_{
m k}$ Number of teeth of small pulley

DRIVE CENTRE FORCE, STATIC

$$F_{\alpha} = 1.4 \cdot \frac{60 \cdot 10^{6} \cdot P_{N} \cdot \sin \frac{\beta}{2}}{t \cdot z_{k} \cdot n_{k}}$$

$$F_{T} = \frac{F_{\alpha}}{2 \cdot \sin \frac{\beta}{2}}$$

$$F_{U} = \frac{P_{N} \cdot 1000}{V}$$

$$F_{T} = \sqrt{\frac{F_{T} \cdot 10^{6}}{4 \cdot m_{k} \cdot L^{2}}}$$

4 POWER RATINGS

4.1 optibelt DELTA Chain profile 8MDC

Table 4.1.1: Rated power for profile 8MDC width 12 mm

	Table 4.1.1. Kalea power for profile 6MDC within 12 min																
	Rated power P _N [kW]																
Speed							mber (of teetl	n on th	e sma	ll pulle	y z _k					
of small timing belt	22	25	28	30	32	34	36	38	40	45	48	50	56	60	64	75	80
pulley	5 / 00		71.00			diam								150 70	1.007	100.00	000 70
n _k [min ⁻¹]	56.02	63.66	/1.30	/6.39	81.49	86.58	91.6/	96.//	101.86	114.59	122.23	127.32	142.60	152./9	162.97	190.99	203./2
10 20 40 60	0.07 0.13 0.25 0.37	0.08 0.15 0.29 0.43	0.10 0.18 0.34 0.50	0.11 0.20 0.38 0.55	0.12 0.22 0.41 0.60	0.13 0.24 0.44 0.65	0.14 0.26 0.48 0.70	0.15 0.28 0.51 0.74	0.16 0.30 0.55 0.79	0.19 0.34 0.63 0.91	0.21 0.38 0.70 1.01	0.22 0.40 0.74 1.07	0.25 0.46 0.84 1.20	0.27 0.50 0.92 1.32	0.29 0.54 1.00 1.44	0.34 0.64 1.22 1.76	0.37 0.69 1.31 1.89
100 200 300 400 500 600	0.59 1.08 1.52 1.95 2.36 2.77	0.70 1.31 1.87 2.39 2.91 3.42	0.81 1.55 2.20 2.84 3.45 4.07	0.88 1.70 2.44 3.14 3.83 4.50	0.96 1.86 2.66 3.43 4.18 4.92	1.03 2.02 2.88 3.72 4.53 5.35	1.11 2.17 3.10 4.01 4.90 5.76	1.19 2.32 3.33 4.30 5.26 6.19	1.27 2.48 3.55 4.60 5.61 6.61	1.46 2.86 4.11 5.32 6.49 7.65	1.60 3.09 4.43 5.74 7.02 8.28	1.69 3.25 4.66 6.03 7.38 8.70	1.94 3.69 5.31 6.88 8.42 9.92	2.12 4.00 5.74 7.45 9.11 10.75	2.30 4.30 6.18 8.01 9.80 11.56	2.81 5.11 7.36 9.55 11.68 13.79	3.01 5.49 7.89 10.24 12.53 14.79
700 800 900 1000 1200	3.17 3.55 3.94 4.31 5.05	3.92 4.40 4.88 5.36 6.29	4.66 5.25 5.82 6.39 7.52	5.15 5.80 6.44 7.08 8.33	5.64 6.36 7.06 7.76 9.13	6.14 6.91 7.68 8.44 9.94	6.63 7.47 8.30 9.12 10.75	7.11 8.02 8.91 9.79 11.54	7.59 8.56 9.52 10.47 12.34	8.80 9.92 11.04 12.14 14.31	9.52 10.74 11.94 13.14 15.49	9.99 11.27 12.54 13.80 16.28	11.42 12.89 14.34 15.77 18.60	12.36 13.95 15.52 17.08 20.15	13.30 15.01 16.70 18.38 21.68	15.86 17.91 19.93 21.93 25.86	17.02 19.21 21.38 23.52 27.74
1400 1600 1800 2000 2400	5.77 6.48 7.18 7.86 9.20	7.20 8.10 8.98 9.85 11.55	8.61 9.70 10.77 11.81 13.87	9.55 10.76 11.94 13.11 15.40	14.41	11.42 12.86 14.29 15.69 18.46	16.98	14.95 16.61 18.24	15.98 17.76 19.51	22.67	20.08 22.32 24.54	25.78	29.49	26.13 29.05 31.93		33.53 37.26 40.93	31.89 35.96 39.96 43.88 51.52
2800 3200 3500 4000 4500	10.51 11.78 12.71 14.24 15.72	14.82 16.02 17.97	21.65	19.84 21.45 24.09	23.60 26.51	21.15 23.79 25.73 28.91 32.00	25.75 27.85 31.29	27.69 29.96 33.66	29.63 32.05 36.00	34.42 37.23 41.80	37.25 40.28 45.22	39.13 42.31 47.48	44.70 48.31	48.35 52.24			58.87
5000 5500	17.17 18.58	21.72 23.53				35.02 37.96					54.60	57.28					
			F			r value olicatio											

Permitted rated circumferential force $F_{N perm}$ with $n_k \le 100 \text{ min}^{-1}$ and $z_k \ge 40$								
Width [mm]	12	21	36	62				
F _{N perm} [N]	2200	4000	7000	12 200				

Width correction factor							
Width [mm]	12	21	36	62			
Factor	1.00	1.75	3.00	5.17			

4 POWER RATINGS

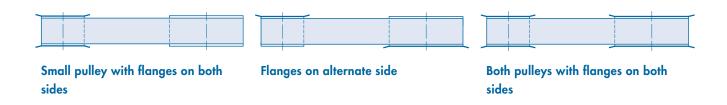
4.2 optibelt DELTA Chain profile 14MDC

Table 4.2.1: Rated power for profile 14MDC width 20 mm

Speed of small																
iming belt	28	30	32	34	36	38	40	44	48	50	56	60	64	72	75	80
pulley					Pitch c	liamete	er of the	e small	timing	belt pu	lley d _w	k [mm]				
n _k [min ⁻¹]	124,78	133,69	142,6	151,52	160,43	169,34	178,25	196,08	213,9	222,82	249,55	267,38	285,21	320,86	334,23	356,
10	0.89	0.95	1.02	1.10	1.17	1.24	1.31	1.44	1.58	1.64	1.85	1.99	2.12	2.38	2.49	2.6
20	1.39	1.50	1.61	1.72	1.17	1.24	2.06	2.28	2.50	2.61	2.93	3.15	3.37	3.79	3.95	4.2
40	2.31	2.51	2.69	2.88	3.07	3.26	3.45	3.82	4.19	4.37	4.92	5.29	5.64	6.36	6.64	7.0
60	3.18	3.44	3.70	3.97	4.23	4.48	4.75	5.27	5.77	6.03	6.79	7.30	7.79	8.79	9.16	9.7
100	4.80	5.21	5.61	6.02	6.41	6.82	7.21	8.00	8.79	9.17	10.34	11.10	11.87	13.39	13.95	14.
200	8.57	9.31	10.05	10.78	11.51	12.23	12.95	14.38	15.80	16.50	18.61	20.00	21.38	24.12	25.14	26.
300	12.11	13.16	14.21	15.24	16.28	17.31	18.34	20.38	22.39	23.40	26.38	28.36	30.33	34.22	35.67	38.
400	15.48	16.83	18.18	19.52	20.86	22.18	23.50	26.13	28.73	30.01	33.85	36.40	38.91	43.90	45.76	48.
500	18.47	20.40	22.04	23.66	25.29	26.90	28.50	31.69	34.85	36.42	41.09	44.17	47.23	53.29	55.54	59.
600	21.91	23.86	25.78	27.69	29.60	31.50	33.37	37.12	40.82	42.66	48.13	51.74	55.32	62.41	65.04	69.
700	25.01	27.23	29.44	31.63	33.81	35.98	38.14	42.41	46.66	48.76	55.01	59.14	63.23	71.31	74.32	79.
800	28.04	30.54	33.02	35.49	37.94	40.37	42.80	47.61	52.37	54.73	61.74	66.37	70.96	80.02	83.38	88.
900	31.01	33.79	36.54	39.28	42.00	44.70	47.39	52.70	57.98	60.59	68.35	73.46	78.54	88.54	92.25	98.
1000	33.93	36.98	40.00	42.99	45.98	48.94	51.88	57.72	63.49	66.35	74.35	80.44	85.98	96.89	100.93	107
1200	39.63	43.21	46.75	50.27	53.76	57.23	60.68	67.50	74.25	77.58	87.49	94.00	100.44	113.10	117.78	125
1400	45.18	49.26	53.32	57.34	61.33	65.29	69.22	77.00	84.68	88.47	99.72	107.10	114.39	128.68	133.95	142
1600	50.58	55.17	59.72	64.22	68.70	73.13	77.53	86.23	94.80	99.04	111.58	119.78	127.85	143.66	149.47	158
1800	55.86	60.93	65.97	70.95	75.88	80.78	85.63	95.22	104.65	109.30	123.05	132.02	140.84	158.02		
2000	61.01	66.56	72.03	77.50	82.90	88.24	93.54	103.97	114.22	119.28	134.15	143.84	153.34			
2400	71.00	77.47	83.86	90.19	96.45	102.63	108.75	120.78	132.54	138.32	155.25					
2800	80.58	87.91	95.16	102.31	109.36	116.34	123.20	136.68	149.78	156.18						
3200	89.77	97.93	105.97	113.88	121.68	129.35	136.91	151.65								
3500	96.42	105.16	113.76	122.20	130.51	138.67	146.69									
4000	107.04	116.68	126.13	135.39	144.52	153.32										

Permitted rated circumferential force $F_{N perm}$ with $n_k \le 100 \text{ min}^{-1}$ and $z_k \ge 40$										
Width [mm]	20	37	68	90	125					
F _{N perm} [N]		13600	25 200	33 400	46500					

Width correction factor										
Width [mm]	20	37	68	90	125					
Factor	1.00	1.85	3.40	4.50	6.25					


5 DESIGN HINTS

5.1 TIMING BELT PULLEYS / TENSION IDLERS

FLANGES

To guide Optibelt timing belts, timing belt pulleys should be equipped with flanges on one or both sides. For drive centre distances $a > 8 d_{w}$, the timing belt pulleys are to be equipped with flanges on both sides. We recommend the use of standard timing belt pulleys. If this is not possible for design reasons, corresponding special timing belt pulley designs can be used.

MAXIMUM TIMING BELT WIDTH

The maximum timing belt width should not be larger than the diameter of the smallest timing belt pulley present in the drive.

TENSION IDLERS

Idlers are toothed or flat faced pulleys that do not transmit power within a drive system. Because they create additional bending stresses within the belt, they should be used according to the following guidelines:

- Diameter of the idlers ≥ the smallest permitted pulley according to the profile
- Width of the idlers ≥ the timing belt pulleys present in the drive
- Always arrange idlers in the empty span
- Inside idlers: ≤ 40 teeth always use timing belt pulley, > 40 teeth flat faced pulley possible
- As outside idlers, flat faced pulleys are to be used in general, as they run on the top surface of the belt
- Flat faced pulleys must not be of spherical shape
- The idlers must be attached in such a way that as many teeth as possible are meshed
- The arc of contact at the idler must be kept as low as possible
- Minimum span width $\geq 2 \cdot \text{belt width}$

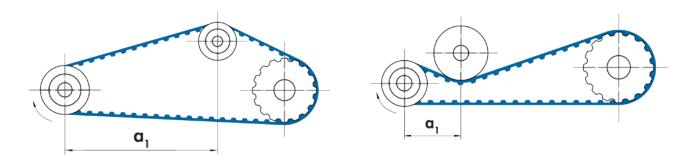


Figure 5.1.1: Arrangement of the inside tension idler

Figure 5.1.2: Arrangement of the outside tension idler

5 DESIGN HINTS

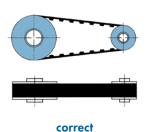
5.2 INSTALLATION AND MAINTENANCE

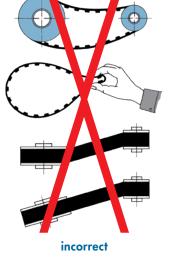
SAFETY INFORMATION

Geometrically correct designing and power rating of drives with Optibelt timing belts ensures high operating reliability and an optimum lifetime. Practice has shown that premature failure can very often be traced to faulty installation or maintenance.

To prevent this, we recommend that you observe the following instructions:

TIMING BELT PULLEYS


The teeth must be manufactured according to standard and also be clean.


ALIGNMENT

Shafts and pulleys should be correctly aligned prior to belt installation.

Maximum deviations of shaft parallelism:

Belt width	Angular misalignment
≤ 25	± 1°
> 25 ≤ 50	± 0.5°
> 50 ≤ 100	± 0.25°
> 100 ≤	± 0.15°

TIMING BELT SETS

Timing belts which run in pairs or groups on one drive must always be ordered as a set. This guarantees that all belts originate from the same batch and are identical in length.

INSTALLATION

Prior to installation, the drive centre distance must be reduced to enable the timing belt to be fitted easily. If this is not possible, the timing belt must be installed together with one or both timing belt pulleys. Forcing belts over the pulley flanges must be avoided as the damage this causes to the high-quality low-stretch tension members is often not visible. If taper bushes are used, the studs used should be checked after an operating time of 0.5 to 1 hour with the aid of a torque spanner.

TENSION

The tension must correspond to the guidelines in Chapter 3.6. Further inspections after installation are not necessary.

• TENSION IDLERS

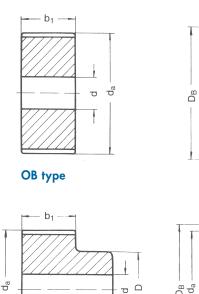
Tension idlers are to be avoided. If this is not possible, refer to the recommendations in Subchapter 5.1 of this manual.

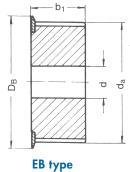
MAINTENANCE

Optibelt timing belts are maintenance-free if used under normal ambient conditions. If there is clearly visible wear on belts and/or pulleys, they should be replaced; see instructions in Subchapters 5.3 and 6.2.

5 DESIGN HINTS

Problem	Cause	Remedy
Heavy wear on the loaded tooth faces of the belt	Belt undertensioned Incorrect pulley profile Pitch error	Correct the tension Check profile and replace, if necessary Use wider belts with higher transmission power
Excessive wear at base of tooth on belt	Excessive belt tension Drive under-dimensioned Faulty timing belt pulleys	Reduce tension Enlarge timing belts or pulleys Replace timing belt pulleys
Unusual wear on belt edges	Improper drive centre parallelism Faulty flanges Change of drive centre distance	Re-align the shafts Replace the flanges Reinforce bearing or housing
Belt teeth shearing off	Overloading Too few teeth in mesh Ambient temperature above 80°C	Increase diameter of small pulley or select wider belt Use wider belts or larger pulleys For ambient temperature above 80°C re-design with optibelt OMEGA HP EPDM -40°C/+140°C
Excessive lateral belt movement	Improper drive centre parallelism Timing belt pulleys are not aligned Impact loading with too high belt tension	Re-align the shafts Align the pulleys Reduce belt tension
Detachment of flanges	Timing belt pulleys not in line Very high lateral pressure of the timing belt Incorrect flange installation	Re-align the timing belt pulleys Re-align the shafts Install flanges correctly
Apparent belt stretch	Incorrect storage	Correct the belt tension, reinforce and secure bearing support
Excessive operating noise	Incorrect shaft alignment Belt tension too high Pulley diameter too small Overloading of timing belt Belt width too wide with high speed	Re-align the shafts Reduce the tension Increase pulley diameter Increase belt width or tooth meshing Reduce belt width by selecting larger belt types
Abnormal wear of timing belt pulleys	Unsuitable material Incorrect tooth meshing Insufficient surface hardness	Use stronger material Replace timing belt pulleys Use harder material or harden surface
Cracks on belt top surface	Ambient temperatures below -30°C	Re-design with optibelt OMEGA HP EPDM -40°C/+140°C Provide heating for drive unit
Softening of the belt top surface	Influence of incompatible media	Shield from the media or use a suitable belt quality





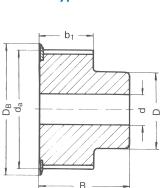
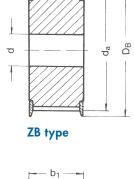
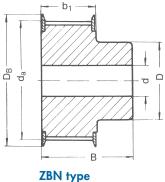

Do not use less than the recommended minimum number of teeth for pulleys, see Table 6.1.1. A pulley diameter that is smaller than the minimum pulley diameter may lead to a reduced operational reliability and an unsatisfactory operating time.

Table 6.1.1: Minimum number of teeth and minimum diameter


Profile	Minimum number of teeth	Minimum diameter [mm]
8MDC	22	56.02
14MDC	28	124.78



EBN type

MATERIALS

OBN type

Steel, grey cast iron, aluminium; further materials on request For speeds > 30 m/s, do not use cast pulleys beyond this speed!

BORES

All timing belt pulleys are pilot bored.

On request they can be finish bored according to DIN H7.

EXPLANATION OF THE ABBREVIATIONS

OB without flanges

EB one flange

ZB two flanges

OBN without flanges, with hub

EBN one flange, with hub

ZBN two flanges, with hub

6.2 DIMENSIONS AND TOLERANCES

PERMISSIBLE DEVIATION OF THE TOOTH SPACINGS

The permissible deviations in the tooth spacing between two consecutive teeth, and of the sum of deviations within a 90° arc, are indicated in the following table. These tolerances represent the spacing between the corresponding points on the right and left surfaces of consecutive teeth.

Table 6.2.1: Permissible deviation of the tooth spacings

Outside diameter d _a [mm]		eviation of the cing [mm]			
	between two consecutive teeth	Sum within a 90° arc			
> 50 ≤ 100 > 100 ≤ 175 > 175 ≤ 300	0.03 0.03 0.03	0.10 0.13 0.15			
> 300 ≤ 500 > 500	0.03 0.03 0.03	0.13 0.18 0.20			

Table 6.2.2: Permissible deviation of the outside diameter

Outside diameter d _a [mm]	Permissible deviation [mm]
> 50 ≤ 100	+ 0.10 0
> 100 ≤ 175	+ 0.13 O
> 175 ≤ 300	+ 0.15 O
> 300 ≤ 500	+ 0.18 O
> 500	+ 0.20 0

The optibelt DELTA Chain high performance timing belts feature outstanding longitudinal stiffness due to the tension cord made of carbon fibres. Especially for drives with short drive centre distances or span lengths, and/or large belt widths, a reduction may be required in the permissible deviation specified for the outside diameter and the running tolerances. Tension force fluctuations and additional loads on bearings, shafts and the belt can be minimised in this way.

Table 6.2.3: Pulley width

Profile	Pulley width designation	For belt width [mm]	Smallest p with flanges b _f * [mm]	ulley width without flanges b [mm]		
8MDC	12	12	14	18		
	21	21	23	27		
	36	36	38	42		
	62	62	65	69		
14MDC	20	20	23	27		
	37	37	40	46		
	68	68	71	<i>77</i>		
	90	90	95	101		
	125	125	130	136		

 $b_f = pulley$ width between the flanges

The minimum width b for pulleys without flanges can be reduced, if the straight running of the drive can be adjusted. However, this must not be below the minimum width indicated for pulleys with flanges bf.

Table 6.2.4: Side wobble tolerance

Outside diameter d _a [mm]	Maximum total variation [mm]
≤ 100	0.10
> 100 ≤ 250	0.01 mm per 10 mm outside diameter
> 250	0.25 mm + 0.0005 mm per mm outside diameter above 250.00 mm

Table 6.2.5: Run-out tolerance

Outside diameter d _a [mm]	Maximum total variation [mm]
≤ 200	0.10
> 200	0.0005 mm per 10 mm outside diameter, however not larger than the outside diameter tolerance

6.2 DIMENSIONS AND TOLERANCES

Table 6.2.6: Static balancing

Steel pulleys machined on all sides must not be balanced if the circumferential speed is less than 30 m/s. Grey cast iron pulleys for medium speeds should be statically balanced as follows:

Profile	Number of teeth	Static balancing [N]
8MDC	≤ 130 > 130	0.08 0.16
14MDC	≤ 72 > 72	0.08 0.16

Timing belt pulleys that are used for a circumferential speed of more than 30 m/s must be dynamically balanced up to 1.8 · 10⁻⁵ Nm.

PARALLELISM

The teeth should be parallel to the centre of the bore with a maximum deviation of 0.001 mm per millimetre of width.

CONICITY

The conicity must not be higher than 0.001 mm per millimetre of head width and must not exceed the permissible outside diameter tolerance.

6.3 TAPER BUSH RANGE

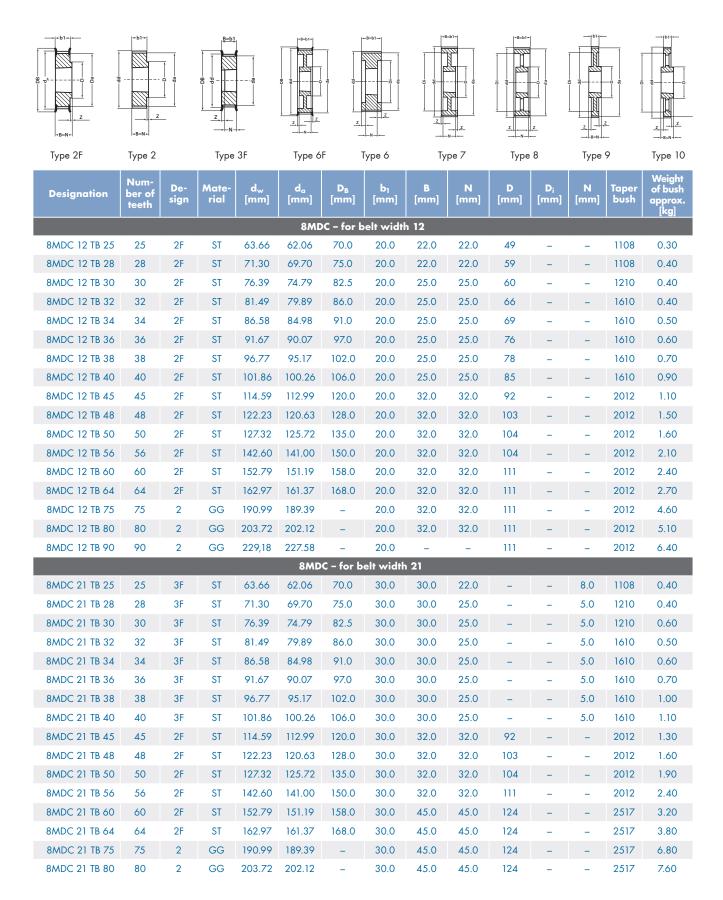
optibelt TB taper bushes

	Taper bushes with metric bores and keyways to DIN 6885 part 1															
	Taper bush										Material: EN-GJL-200 – DIN EN 1561					
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050
Bore diameter d ₂ [mm]	10 11 12 14 15 16 18 19 20 22 24 \$\triangle 25 \$\triangle 25	10 11 12 14 15 16 18 19 20 22 24 25 28	11 12 14 16 18 19 20 22 24 25 28 30 32	11 12 14 16 18 19 20 22 24 25 28 30 32	14 16 18 19 20 22 24 25 28 30 32 35	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 ▲	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50	14 16 18 19 20 24 25 28 30 32 35 38 40 42 45 48 50 55 60	25 28 30 32 35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	40 42 45 48 50 55 60 65 70 75 80 85 90 95 100	55 60 65 70 75 80 85 90 95 100 105 110	70 75 80 85 90 95 100 105 110 115 120 125
Hexagonal socket screws [in]	$^{1}/_{4} \times ^{1}/_{2}$	$^{1}/_{4} \times ^{1}/_{2}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{7}/_{16} \times ^{7}/_{8}$	¹ / ₂ x 1	⁵ / ₈ x 1 ¹ / ₄	⁵ / ₈ x 1 ¹ / ₄	1/ ₂ x 1 ¹ / ₂	1/ ₂ x 1 ¹ / ₂	⁵ / ₈ x 1 ³ / ₄	$^{3}/_{4} \times 2$	$^{7}/_{8} \times 2^{1}/_{4}$
Torque [Nm]	5.7	5.7	20	20	20	20	20	31	49	92	92	115	115	172	195	275
Bush length [mm]	22.3	22.3	25.4	38.1	25.4	25.4	38.1	31.8	44.5	50.8	76.2	63.5	88.9	101.6	114.3	127.0
Weight at d _{2 min} [kg]	0.12	0.16	0.28	0.39	0.32	0.41	0.60	0.75	1.06	2.50	3.75	3.90	5.13	7.68	12.70	15.17

Over 3525: Cap head screw with hexagonal socket A This bore has shallow keyways.

Shallow keyways for taper bushes

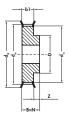
Bore diameter d ₂ [mm]	Keyway width b [mm]	Keyway depth t ₂ [mm]	Bore diameter d ₂ [mm]	Keyway width b [mm]	Keyway depth t ₂ [mm]
24	8	2.0	28	8	2.0
25	8	1.3	42	12	2.2


Taper bushes with inch bores and keyway to British Standard BS 46 part 1																	
	Taper bush											Material: EN-GJL-200 – DIN EN 1561					
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050	
Bore diameter d ₂ [in]	3/8* 1/2 5/8 3/4 7/8 1 ▲	3/8* 1/2 5/8 3/4 7/8 1 11/8 **	1/2 5/8 3/4 7/8 1 1 ¹ /8 1 ¹ /4	5/8* 3/4 7/8 1 1 ¹ /8 1 ¹ /4	1/2* 5/8* 3/4* 7/8* 1* 11/8 11/4 13/8	1/2 5/8 3/4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8	1/2 5/8 3/4 7/8* 1 11/8 11/4 13/8 11/2 15/8 **	5/8* 3/4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8 2	3/4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8 2 2 ¹ /8 2 ¹ /4 2 ³ /8 2 ¹ /2	11/4 13/8 11/2 15/8 13/4* 17/8 2 21/8* 21/4 23/8 21/2 25/8 23/4 27/8 3	11/4 13/8 11/2 15/8 13/4* 17/8 2 21/8* 21/4 23/8 21/2 25/8* 23/4* 27/8 3	11/2 15/8 13/4 17/8 2 21/8 21/4 23/8 21/2 25/8 23/4 27/8 31/8 31/4 33/8 31/2	11/2 15/8 13/4 17/8 2 21/8 21/4 23/8 21/2 25/8 23/4 27/8 3 31/8 31/4 33/8 31/2	13/4* 17/8* 2* 21/8* 21/4* 23/8* 21/2* 25/8* 23/4* 27/8* 3* 31/8* 31/8* 31/2* 33/4 4* 4 4*	21/4* 23/8* 21/2* 23/4* 37/8* 31/4* 33/8* 31/2* 33/4* 4* 41/4 * 41/2 *	3* 31/4* 31/2* 33/4* 4* 41/2* 41/2* 43/4* 5 **	
Hexagon socket screws [in]	$^{1}/_{4} \times ^{1}/_{2}$	$^{1}/_{4} \times ^{1}/_{2}$	$^{3}/_{8}$ x $^{5}/_{8}$	$^{3}/_{8}$ x $^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8}$ x $^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{7}/_{16} \times ^{7}/_{8}$	$^{1}/_{2} \times 1$	$^{5}/_{8} \times 1^{1}/_{4}$	$^{5}/_{8} \times 1^{1}/_{4}$	$^{1}/_{2} \times 1^{1}/_{2}$	1/ ₂ x 1 ¹ / ₂	$^{5}/_{8} \times 1^{3}/_{4}$	$^{3}/_{4} \times 2$	$^{7}/_{8} \times 2^{1}/_{4}$	
Torque [Nm]	5.7	5.7	20	20	20	20	20	31	49	92	92	115	115	172	195	275	
Bush length [mm]	22.3	22.3	25.4	38.1	25.4	25.4	38.1	31.8	44.5	50.8	76.2	63.5	88.9	101.6	114.3	127.0	
Weight at d _{2 min} [kg]	0.12	0.16	0.28	0.39	0.32	0.41	0.60	0.75	1.06	2.50	3.75	3.90	5.13	7.68	12.70	15.17	

Over 3525: Cap head screw with hexagonal socket * Non-stock items A This bore has a shallow keyway.

6.4 TOOTHED PULLEY RANGE

optibelt ZRS DC toothed pulleys profile 8MDC for optibelt TB taper bushes



optibelt ZRS DC toothed pulleys profile 8MDC for optibelt TB taper bushes

Designation	Num- ber of teeth	De- sign	Mate- rial	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	N [mm]	D [mm]	D _i [mm]	N [mm]	Taper bush	Weight of bush approx. [kg]
8MDC 21 TB 90	90	9	GG	229.18	227.58	-	30.0	45.0	45.0	124	198	7.5	2517	8.60
8MDC 21 TB 112	112	9	GG	285.21	283.61	-	30.0	45.0	45.0	124	253	7.5	2517	12.50
8MDC 21 TB 140	140	10	GG	356.51	354.91	-	30.0	51.0	51.0	150	324	10.5	3020	12.80
					8MD	C – for b	elt width	ı 36						
8MDC 36 TB 28	28	3F	ST	71.30	69.70	<i>7</i> 5.0	45.0	45.0	25.0	_	_	20.0	1210	0.70
8MDC 36 TB 30	30	3F	ST	76.39	74.79	82.5	45.0	45.0	25.0	-	-	20.0	1610	0.60
8MDC 36 TB 32	32	3F	ST	81.49	79.89	86.0	45.0	45.0	25.0	_	_	20.0	1610	0.80
8MDC 36 TB 34	34	3F	ST	86.58	84.98	91.0	45.0	45.0	25.0	-	-	20.0	1610	1.00
8MDC 36 TB 36	36	3F	ST	91.67	90.07	97.0	45.0	45.0	25.0	_	_	20.0	1610	1.20
8MDC 36 TB 38	38	3F	ST	96.77	95.17	102.0	45.0	45.0	25.0	-	-	20.0	1610	1.40
8MDC 36 TB 40	40	3F	ST	101.86	100.26	106.0	45.0	45.0	32.0	_	_	13.0	2012	1.40
8MDC 36 TB 45	45	3F	ST	114.59	112.99	120.0	45.0	45.0	32.0	-	-	13.0	2012	1.90
8MDC 36 TB 48	48	3F	ST	122.23	120.63	128.0	45.0	45.0	32.0	-	-	13.0	2012	2.20
8MDC 36 TB 50	50	3F	ST	127.32	125.72	135.0	45.0	45.0	32.0	-	-	13.0	2012	2.70
8MDC 36 TB 56	56	3F	ST	142.60	141.00	150.0	45.0	45.0	45.0	-	-	-	2517	3.00
8MDC 36 TB 60	60	3F	ST	152.79	151.19	158.0	45.0	45.0	45.0	-	-	-	2517	3.80
8MDC 36 TB 64	64	3F	ST	162.97	161.37	168.0	45.0	45.0	45.0	_	-	-	2517	4.50
8MDC 36 TB 75	75	2	GG	190.99	189.39	_	45.0	51.0	51.0	150	_	_	3020	8.70
8MDC 36 TB 80	80	2	GG	203.72	202.12	_	45.0	51.0	51.0	150	_	_	3020	10.00
8MDC 36 TB 90	90	9	GG	229,18	227.58	-	45.0	51.0	51.0	150	197	3.0	3020	10.40
8MDC 36 TB 112	112	9	GG	285.21	283.61	_	45.0	51.0	51.0	150	253	3.0	3020	14.00
8MDC 36 TB 140	140	10	GG	356.51	354.91	-	45.0	51.0	51.0	150	324	3.0	3020	12.00
8MDC 36 TB 168	168	10	GG	427.81	426.21	_	45.0	65.0	65.0	198	396	10.0	3525	23.90
8MDC 36 TB 192	192	10	GG	488.92	487.32	_	45.0	65.0	65.0	198	457	10.0	3525	26.60
					8MD	C – for b	elt width	62						
8MDC 62 TB 40	40	3F	ST	101.86	100.26	106.0	72.0	72.0	32.0	_	-	40.0	2012	2.10
8MDC 62 TB 45	45	3F	ST	114.59	112.99	120.0	72.0	72.0	32.0	-	_	40.0	2012	3.30
8MDC 62 TB 48	48	3F	ST	122.23	120.63	128.0	72.0	72.0	45.0	_	_	27.0	2517	3.90
8MDC 62 TB 50	50	3F	ST	127.32	125.72	135.0	72.0	72.0	45.0	_	_	27.0	2517	4.70
8MDC 62 TB 56	56	6F	ST	142.60	141.00	150.0	72.0	45.0	45.0	_	111	13.5	2517	5.50
8MDC 62 TB 60	60	6F	ST	152.79	151.19	158.0	72.0	45.0	45.0	_	121	13.5	2517	6.40
8MDC 62 TB 64	64	6F	ST	162.97	161.37	168.0	72.0	45.0	45.0	_	131	13.5	2517	7.20
8MDC 62 TB 75	75	6	GG	190.99	189.39	_	72.0	72.0	51.0	-	159	10.5	3020	10.00
8MDC 62 TB 80	80	6	GG	203.72	202.12	_	72.0	72.0	51.0	_	172	10.5	3020	11.50
8MDC 62 TB 90	90	6	GG	229,18	227.58	_	72.0	72.0	51.0	-	197	10.5	3020	15.00
8MDC 62 TB 112	112	7	GG	285.21	283.61	_	72.0	72.0	51.0	150	253	10.5	3020	15.00
8MDC 62 TB 140	140	7	GG	356.51	354.91	_	72.0	72.0	65.0	198	324	3.5	3525	24.80
8MDC 62 TB 168	168	8	GG	427.81	426.21	_	72.0	72.0	65.0	198	396	3.5	3525	28.40
8MDC 62 TB 192	192	8	GG	488.92	487.32	_	72.0	72.0	65.0	198	457	3.5	3525	32.20
Taper bush		1008		1108		1210	1	610	20	12			n ST: Stee ht to alter s	l specifications
Bore d ₂ from to	D	10-25		10-28		11-32	1.	4-42	14-	50	without	notice.	ee Subcha	

optibelt ZRS DC toothed pulleys profile 8MDC for cylindrical bore

Type 1F

Designation	Number of teeth	De- sign	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	S [mm]	D [mm]	Weight approx. [kg]
				8MD	C – for bel	t width 12					
8MDC 12 22	22	1F	ST	56.02	54.42	62.0	20.0	30.0	30.0	43	0.50
	8MDC – for belt width 21										
8MDC 21 22	22	1F	ST	56.02	54.42	62.0	30.0	40.0	40.0	43	0.60
				8MD	C – for bel	t width 36					
8MDC 36 25	25	1F	ST	63.66	62.06	70.0	45.0	55.0	55.0	49	1.10
				8MD	C – for bel	t width 62					
8MDC 62 30	30	1F	ST	76.39	74.79	86.0	72.0	84.0	84.0	65	2.50
8MDC 62 32	32	1F	ST	81.49	79.89	90.0	72.0	84.0	84.0	69	2.80
8MDC 62 34	34	1F	ST	86.58	84.98	95.0	72.0	84.0	84.0	74	3.00
8MDC 62 36	36	1F	ST	91.67	90.07	98.0	72.0	84.0	84.0	77	3.40
8MDC 62 38	38	1F	ST	96.77	95.17	106.0	72.0	84.0	84.0	84	3.80

ST: Steel We reserve the right to alter specifications without notice.

optibelt ZRS DC toothed pulleys profile 14MDC for optibelt TB taper bushes

optibelt ZRS DC toothed pulleys with profile 14MDC for optibelt TB taper bushes

optibelt ZRS DC toothed pulleys with profile 14MDC for cylindrical bore

7. GENERAL INFORMATION

7.1 OVERVIEW OF STANDARDS

Federal Republic of Germany	ISO 2790	 Narrow V-Belt Drives for the Automotive Industry; Dimensions
DIN 109 Sheet 1 — Drive Elements; Circumferential Speeds DIN 109 Sheet 2 — Drive Elements; Centre Distances for V-Belt Drives	ISO 3410	 Endless Speed Changer Belts and Pulleys for Agricultural Machinery
DIN 111 - Pulleys for Flat Transmission Belts; Dimensions, Nominal	ISO 4183	- Grooved Pulleys for Classical V-Belts and Narrow V-Belts
Torques	ISO 4184	 Classical V-Belts and Narrow V-Belts; Lengths
DIN 111 Sheet 2 – Pulleys for Flat Transmission Belts; Classification for Electrical Machines	ISO 5256	 Synchronous Belt Drives; Belt Tooth Pitch Code Part 1 MXL; XL; L; H; XH; XXH
DIN 2211 Sheet 1 – Grooved Pulleys for Narrow V-Belts; Dimensions,		Part 2 MXL; XXL Metric Dimensions
Materials	ISO 5287	 Narrow V-Belt Drives for the Automotive Industry;
DIN 2211 Sheet 2 – Grooved Pulleys for Narrow V-Belts; Inspections of		Fatigue Test
Grooves	ISO 5288	 Vocabulary from Timing Belt Drives
DIN 2211 Sheet 3 – Grooved Pulleys for Narrow V-Belts; Classification for Electrical Machines	ISO 5289	 Endless Double Profile V-Belts and Pulleys for Agricultural Machinery
DIN 2215 – Endless V-Belts, Classical Profiles; Minimum Datum Diameter of the Pulleys, Internal and Datum Belt Length	ISO 5290	 Grooved Pulleys for Joined Narrow V-Belts; Profiles: 9J; 15J; 20J; 25J
DIN 2216 – Open-Ended V-Belts; Dimensions DIN 2217 Sheet 1 – V-Belt Pulleys for Classical Profiles; Dimensions, Materials	ISO 5291	 Grooved Pulleys for Joined Classical V-Belts; Profiles: AJ; BJ; CJ; DJ
DIN 2217 Sheet 2 – V-Belt Pulleys for Classical Profiles; Inspections of Grooves	ISO 5292	 Industrial V-Belt Drives; Calculations of the Performance Data and Centre Distance
DIN 2218 – Endless V-Belts, Classic Profiles for Mechanical Engineering; Calculation of Drives, Performance Data	ISO 5295	 Timing Belts; Calculations of the Performance Data and Centre Distance – "Inch Pitch"
DIN 7716 - Rubber Products; Requirements for Storage, Cleaning	ISO 8370-1	- Dynamic Test to Determine Pitch Zone Location with V-Belts
and Maintenance DIN 7719 Part 1 – Endless Wide V-Belts for Industrial Speed Changers;	ISO 8370-2	 Dynamic Test to Determine Pitch Zone Location with V-Ribbed Belts
Belts and Groove Profiles for Corresponding Pulleys DIN 7719 Part 2 – Endless Wide V-Belts for Industrial Speed Changers;	ISO/DIS 8419	 Belt Drives; Joined Narrow V-Belts; Lengths in Effective System; 9N/J, 15N/J, 25N/J
Measurement of Centre Distance Variations	ISO 9010	 Synchronous Belt Drives – Automotive Belts
DIN 7721 Part 1 – Synchronous Belt Drives, Metric Pitch;	ISO 9011	 Synchronous Belt Drives – Automotive Pulleys
Synchronous Belts	ISO 9563	 Antistatic Endless Synchronous Belts; Electrical
DIN 7721 Part 2 – Synchronous Belt Drives, Metric Pitch;		Conductibility; Characteristics and Testing Method
Tooth Space Profile of Synchronous Pulleys DIN 7722 – Endless Hexagonal Belts for Agricultural Machines and	ISO 9980	 Belt Drives; V-Belt Pulleys, Geometric Inspection of Grooves
Groove Profiles of Corresponding Pulleys DIN 7753 Part 1 — Endless Narrow V-Belts for Mechanical Engineering;	ISO 9981	 Belt Drives – Pulleys and V-Ribbed Belts for the Automotive Industry; PK Profile
Dimensions	ISO 9982	 Belt Drives; Pulleys and V-Ribbed Belts for Indus-
DIN 7753 Part 2 – Endless Narrow V-Belts for Mechanical Engineering;		trial Requirements; Geometric Data PH, PJ, PK, PL, PM
Drive Calculation, Performance Data	ISO 11749	 Belt Drives – V-Ribbed Belts for the Automotive Industry,
DIN 7753 Part 3 – Endless Narrow V-Belts for the Automotive Industry; Dimensions	ISO 12046	Fatigue Testing - Synchronous Belt Drives – Automotive Belts – Physical
DIN 7753 Part 4 – Endless Narrow V-Belts for the Automotive Industry; Fatigue Testing	ISO 13050	Characteristics Synchronous Belt Drives – Metric Pitch, Curvilinear
DIN 7867 – V-Ribbed Belts and Pulleys		Profile Systems G, H, R and S, Belts and Pulleys
DIN/ISO 5290 — Grooved Pulleys for Joined Narrow V-Belts; Groove Profiles 9J; 15J; 20J; 25J	ISO 17396	Synchronous Belt Drives – Metric Pitch, Trapezoidal Profile Systems T and AT, Belts and Pulleys
DIN 22100-7 – Articles from Synthetics for Use in Underground Mines, Paragraph 5.4 – V-Belts	ISO 19347	Synchronous belt drives Imperial pitch trapezoidal profile system Belts and pulleys
DIN EN 60695-11-10		t

ISO – International Organization for Standardization USA

- Fire Hazard Testing

ISO 22	– Widths of Flat Transmission Belts and Corresponding	RMA/ARPM IP-20 – Classical V-Belts and Sheaves
	Pulleys	(A; B; C; D; Cross Profiles)
ISO 63	– Flat Belt Drives; Lengths	RMA/ARPM IP-21 – Double (Hexagonal) Belts (AA; BB; CC; DD Cross
ISO 99	- Diameter of the Belt Pulleys for Flat Belts	Profiles)
ISO 100	 Bulging Height of the Belt Pulleys for Flat Belts 	RMA/ARPM IP-22 – Narrow Multiple V-Belts (3V; 5V; and 8V Cross Profiles)
ISO 155	 Belt Pulleys; Limiting Values for Adjustment of Centre 	RMA/ARPM IP-23 – Single V-Belts (2L; 3L; 4L; and 5L Cross Profiles)
	Distances	RMA/ARPM IP-24 – Synchronous Belts (MXL; XL; L; H; XH; and XXH Belt
ISO 254	 Quality, Finish and Balance of Belt Pulleys 	Profiles)
ISO 255	 Pulleys for Classical V-Belts and Narrow V-Belts; 	RMA/ARPM IP-25 – Variable Speed V-Belts (12 Cross Profiles)
	Geometric Testing of Grooves	RMA/ARPM IP-26 – V-Ribbed Belts (PH; PJ; PK; PL; and PM Cross Profiles)
ISO 1081	 Vocabulary from V-Belts, V-Ribbed Belts and Pulleys 	RMA/ARPM IP-27 – Curvilinear Toothed Synchronous Belts
ISO 1604	 Endless Speed Changer Belts and Pulleys for Mechani- 	(8M – 14M Pitches)
	cal Engineering	ASAE S 211 – V-Belt Drives for Agricultural Machines
ISO 1813	 Electrical Conductivity of V-Belts, Kraftbands, V-Ribbed 	SAE J636b - V-Belts and Pulleys
	Belts, Wide V-Belts and Double Profile V-Belts	SAE J637 – Automotive V-Belt Drives
ISO 2230	- Please Consult DIN 7716	

7. GENERAL INFORMATION

	Company:
	Street address/P.O. Box number:
	Town or city/Post code:
	Contact person:
	Department: Date:
	Phone: Fax:
	E-mail:
	Currently fitted with:
For test New drive	pitch length profile width manufacturer
For pilot production Existing drive	
For series production Requirement Pieces/year	
PRIME MOVER	DRIVEN MACHINE
Type (e.g. electric motor, diesel engine 3 cylinders)	Type (e.g. lathe, compressor)
Size of the starting torque (e.g. MA = 1.8 MN)	Start: under load no load
Type of start (e.g. star delta)	
Daily operating timehours	Type of load: steady pulsating
Number of starts per hour per day	shock
Change in the direction of rotation per minute per hour	Required power: P normal
Power: P normalkW P maximum kW	Required power: P normalkW P maximalkW
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	or max. torqueNm at n ₂ min ⁻¹
Speed of driver pulley n ₁ min ⁻¹	Driven speed n ₂ min ⁻¹
Shaft layout: horizontal vertical	n _{2 min} min ⁻¹
, inclined	n _{2 max} min ⁻¹
Maximum allowed static shaft loading $S_{a max}$ N	Maximum allowed shaft loading S _{a max}
Pitch diameter or number of teeth on the pulley:	Pitch diameter or number of teeth on the pulley:
$d_{w1} \underline{\hspace{1cm}} mm z_1 \underline{\hspace{1cm}} mm$	$d_{w2} \qquad \qquad mm z_2 \qquad \qquad mm$
$d_{w1\;min}\;\;\underline{\qquad}\;\;mm\;\;\;z_{1\;min}\;\;\underline{\qquad}\;\;mm$	d_{w2min} mm z_{2min} mm
$d_{w1 max}$ mm $z_{1 max}$ mm	$d_{w2 \text{ max}}$ mm $z_{2 \text{ max}}$ mm
Maximum pulley face widthmm	Maximum pulley face widthmm
Speed ratio i	i _{min} i _{max}
Drive centre distance a mm	a_{min} mm a_{max} mm
Tension/guide idler pulley: inside idler	in drive slack side
outside idler	in drive tigth side
d _w mm pulley	moveable (e.g. spring loaded)
d _a mm flat pulley	fixed
Operating conditions Ambient temperature	°C/F minimum
	°C/F max.
Influence of oil	(e.g. oil mist, drops)
water	(e.g. spray water)
acid 📙	(type, concentration, temperature)
dust	(type)

Special drives:

e.g. for drives with inside or outside tensioning/idler pulleys, three or more multi-pulley drives or for drives with contra-rotating pulleys drawings are necessary. Please use the other side of this page for these drawings.

NOTES	
	_
	_
	_
	_

NOTES

Owner of any and all copyrights and intellectual property rights as well as other rights of use and exploitation: Arntz Optibelt Group, Höxter, Germany. Any use, exploitation, reproduction, and any transfer to third parties by any means shall require the prior written approval of the Arntz Optibelt Group, Höxter, Germany. Any infringement will be prosecuted under the copyright act law.

The products on offer provided by Optibelt are exclusively oriented towards specialised trade and not towards the consumer. Optibelt recommends that its products are to be exclusively used in accordance with the information provided in Optibelt documentation. The use of Optibelt products in aeroplanes or aviation systems, products and/or applications is not permitted. If in doubt, consult Optibelt before using any Optibelt products. Optibelt does not accept any liability for the use of Optibelt products in systems, products and/or applications for which they were not designed and/or manufactured. This is particularly, but not exclusively, the case if Optibelt products are to be used outside of any specific agreement with Optibelt in circumstances which are unusual or which present a particular risk to health, safety or the environment, or which require a more demanding use.

Errors and omissions excepted. Optibelt does not accept any liability for the correctness or completeness of the information supplied by Optibelt or for the suitability of the information for use by the recipient of the information. Optibelt does not therefore, as far as permitted by law, accept liability for damage resulting outside of any specific agreement with Optibelt from the use of the information or the assumption that the information is correct and complete.

The general terms and conditions of sale of Optibelt GmbH, Höxter, Germany, in particular the agreements relating to retention of title, including in their longer and extended form, shall apply exclusively. These terms and conditions can be obtained free of charge by visiting http://www.optibelt.de/agb/de. Optibelt shall not accept any of the customer's own terms and conditions that are contrary to or deviate from these terms and conditions, even if Optibelt does not explicitly object to them or unconditionally renders performance or accepts the performance by the customer irrespective of the customer's conflicting or differing terms of business.

Print: 0521

Optibelt GmbH

Corveyer Allee 15 37671 Höxter GERMANY T +49 5271 621 F +49 5271 976200 E info@optibelt.com

www.optibelt.com